On the number of positive solutions of some semilinear elliptic problems

ANTONIO AMBROSETTI *

Dedicated to the memory of Giovanni Prodi

1 Introduction and main results

In this Note we deal with semilinear elliptic Dirichlet boundary value problems like
\[
\begin{cases}
-\Delta u &= \lambda u - f(u) + h(x) \quad x \in \Omega, \\
u(x) &= 0 \quad x \in \partial \Omega.
\end{cases}
\]
(D_h)

Here \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with \(C^{0,\nu} \) boundary \(\partial \Omega \), \(h \in C^{0,\nu}(\Omega) \) and \(f : \mathbb{R} \to \mathbb{R} \) satisfies

\[(f1) \quad f \in C^2(\mathbb{R}), \quad f(0) = f'(0) = 0 \text{ and } f''(s) > 0 \quad \forall s \neq 0 \]

\[(f2) \quad \lim_{s \to \pm \infty} \frac{f(s)}{s} = +\infty. \]

If \(h = 0 \) the problem \((D_h)\) will be denoted by \((D)\). By a solution of \((D_h)\) we mean a \(C^{2,\nu}(\Omega) \) classical solution.

In order to state our main results some notation is in order. If \(m \in L^\infty(\Omega) \), \(\lambda_k[m] \) denotes the k-th eigenvalue of

\[
\begin{cases}
-\Delta u &= \lambda m(x) u \quad x \in \Omega \\
u(x) &= 0 \quad x \in \partial \Omega
\end{cases}
\]

(1)

If \(m(x) \equiv 1 \), we set \(\lambda_k[m] = \lambda_k \).

* S.I.S.S.A. via Bonomea 265, 34136 Trieste, e-mail: ambr@sissa.it
Theorem 1. Suppose that f satisfies $(f1-2)$ and let $\lambda > \lambda_1$. Then (D) has exactly one positive u_1 and one negative solution u_2. Moreover, if $\lambda \neq \lambda_k$, there exists $\varepsilon_\lambda > 0$ such that if $\|h\|_{L^2} \leq \varepsilon_\lambda$, then (D_h) has one solution near each of $u = 0, u_1, u_2$.

Remarks 2. (i) In [2] it has been proved that if $(f1-2)$ hold and $\lambda_1 < \lambda < \lambda_2$ then (D) has exactly one positive and one negative solution and (D) has no other solution. As a byproduct of our arguments we will give a simple proof of this fact, see Remark 9. Moreover, in [2] it is shown that if λ_2 is simple and $\lambda_2 < \lambda \leq \lambda_2 + \delta$, with $\delta > 0$ sufficiently small, (D) has exactly 4 non-trivial solutions. In addition, there exists $\varepsilon = \varepsilon(\lambda) > 0$ such that (D_h) with $\|h\|_{L^2} \leq \varepsilon$ has precisely 3 solutions, resp. 5 solutions, provided $\lambda_1 < \lambda < \lambda_2$, resp. $\lambda_2 < \lambda \leq \lambda_2 + \delta$.

(ii) Problem (D_h) with $f(u) = u^3$ has been also studied in [6]. Using the theory of singularities, it is evaluated the exact number of solutions of (D_h) (with no restriction on the norm of h) provided $\lambda_1 < \lambda < \lambda_1 + \Lambda$ for some $\Lambda > 0$. In general, the result cannot be extended to cover all $\lambda_1 < \lambda < \lambda_2$, see [7].

(iii) The first paper concerning with the precise number of solutions of semilinear elliptic problems is [4]. It deals with the so called jumping non-linearities. See also [5] and references therein. □

2 Preliminaries

We set $H = L^2(\Omega)$ with scalar product $(\cdot | \cdot)$ and norm $\|\cdot\|$, and define $K \in L(H, H)$ by setting

$$Kv = u \iff -\Delta u = v, \quad v|_{\partial\Omega} = 0.$$

Let us consider $F_\lambda \in C^2(H, H)$,

$$F_\lambda(u) = u - \lambda Ku - Kf(u).$$

With this notation, $u \in H$ is a weak (and, by regularity, classical) solution of (D_h), resp. (D), whenever $F_\lambda(u) = Kh$, resp. $F_\lambda(u) = 0$.

We denote by Σ_λ the set of $u \in H$ such that $\text{Ker}[F'_\lambda(u)] \neq \{0\}$. The set Σ_λ is called the singular set of F_λ. See e.g. [3, Section 3]

Remark 3. If $u \in \Sigma_\lambda$ there exists an integer $i \geq 1$ such that $\lambda_i[\lambda - f'(u)] = 1$. □
We denote by S_λ the set of nontrivial solutions of (D). It is well known that, if $\lambda > \lambda_1$ then (D) has at least 2 nontrivial solutions $u_1 > 0$ and $u_2 < 0$. This result can be proved in several manner: by variational methods, by sub- and super-solutions or by degree, cfr. e.g. [1].

Finally, $F_\lambda = Id - \text{Compact}$ and the solutions of (D) are bounded: there exists $C > 0$ such that

$$\|u\|_{L^2} \leq C, \quad \forall u \in S_\lambda. \quad (2)$$

As a consequence, for all $r > C$ there holds

$$\deg(F_\lambda, B_r, 0) = 1, \quad (3)$$

where B_r denotes the ball of radius r in H and \deg denotes the Leray-Schauder (LS for short) degree.

3 Some lemmas

In this section we prove some lemmas. It is always understood that $(f_1 - 2)$ hold.

Lemma 4. Let $u \in S_\lambda$. Then for all $x \in \Omega$ such that $u(x) \neq 0$ there exists a unique $t_u = t_u(x) \in]0,1[$ such that $t_u u \in H$ and $F_\lambda'(t_u u) [u] = 0$. Hence $t_u u \in \Sigma_\lambda$ and $\Sigma_\lambda \neq \emptyset$.

Proof. By the assumptions on f it follows that $\forall x \in \Omega$ such that $u(x) \neq 0$, there exists a unique $t_u = t_u(x) \in]0,1[$ such that

$$f(u(x)) = f'(t_u(x)u(x))u(x). \quad (4)$$

Since the set $\{x \in \Omega : u(x) = 0\}$ has zero Lebesgue measure, then $0 < t_u(x) < 1$ for almost every $x \in \Omega$ and $t_u u \in H$. We claim that $t_u u \in \Sigma_\lambda$. Since u is a solution of (D) one has

$$u = \lambda K u - K f(u). \quad (5)$$

Using (4) and (5), we get

$$F_\lambda'(t_u u) [u] = u - \lambda K u + K f'(t_u u) u = K f'(t_u u) u - K f(u) = 0.$$

Then $F_\lambda'(t_u u) [u] = 0$ has the nontrivial solution $u \neq 0$ and hence $t_u u \in \Sigma_\lambda$, as claimed. \qed
Example. If $f(s) = |s|^{p-1}s$ then (4) yields $t_u(x) \equiv p^{-1/(p-1)}$. □

Remark 5. The preceding proof highlights that $u \in \text{Ker}[F'_\lambda(t_\lambda u)]$. □

If $\lambda \geq \lambda_1$ the singular set Σ_λ is not empty. Actually, if $\lambda > \lambda_1$ and $\Sigma_\lambda = \emptyset$ (if $\lambda = \lambda_1$ then $\Sigma_\lambda = \{0\}$), one could apply the Global Inversion Theorem (see [3, Theorem 3.1.8]) and (D) should have the trivial solution, only.

Next, we set

$$\Sigma_{\lambda,1} = \{u \in \Sigma_\lambda : \lambda - f'(u) = 1\} \quad \text{and} \quad \Sigma_{\lambda,2} = \Sigma_\lambda \setminus \Sigma_{\lambda,1}. $$

Although only $\Sigma_{\lambda,1}$ plays a role to prove Theorem 1, for completeness we will make in the sequel some remarks on $\Sigma_{\lambda,2}$, also.

We let $\mathcal{S}_{\lambda,1}$ be the set of solutions which do not change sign in Ω.

Lemma 6. If $\lambda > \lambda_1$ then $\Sigma_{\lambda,1} \neq \emptyset$. Moreover, if $\lambda > \lambda_2$ then $\Sigma_{\lambda,2}$ is also not empty.

Proof. As remarked in Section 2, if $\lambda > \lambda_1$ then $\mathcal{S}_{\lambda,1} \neq \emptyset$. Let $u \in \mathcal{S}_{\lambda,1}$. By Lemma 4 and Remark 5, $t_\lambda u \in \Sigma_\lambda$ and a corresponding eigenfunction is u which does not change sign in Ω. Since the only eigenvalue with an eigenfunction that does not change sign in Ω is the first one, then $\lambda_1[\lambda - f'(t_\lambda u)] = 1$. Hence $t_\lambda u \in \Sigma_{\lambda,1}$, which is therefore not empty. Next, let $z \in \mathcal{S}_\lambda \setminus \mathcal{S}_{\lambda,1}$. By Lemma 4 we infer there exists $t_z(x)$ such that $t_z z \in \Sigma_\lambda$. By Remark 5 an eigenfunction corresponding to $t_z z$ is z which changes sign in Ω. Then $\lambda_1[\lambda - f'(t_z z)] \neq 1$ because the Kernel corresponding to the first eigenvalue is one dimensional and spanned by a positive function. Then $\lambda_i[\lambda - f'(t_z z)] = 1$ for some integer $i > 1$. Therefore $\Sigma_{\lambda,2} \neq \emptyset$ and the proof is complete. □

Remarks 7. (i) If $\lambda < \lambda_1$, resp. $\lambda \leq \lambda_1$ one has that $\Sigma_\lambda = \emptyset$, resp. $\Sigma_{\lambda,1} = \emptyset$. Moreover, if $\lambda < \lambda_2$ one has that $\lambda - f'(u) < \lambda_2$ and hence $\lambda_i[\lambda - f'(u)] > 1$ for all $i \geq 2$. Thus $\Sigma_\lambda = \Sigma_{\lambda,1}$.

(ii) If $\lambda < \lambda_2$ then $\mathcal{S}_\lambda = \mathcal{S}_{\lambda,1}$. Otherwise, let z be a solution of (D) which changes sign. Then $t_z z \in \Sigma_\lambda$. Precisely, by (i) one has that $z \in \Sigma_{\lambda,1}$, namely $\lambda_1[\lambda - f'(t_z z)] = 1$. Moreover $z \in \text{Ker}[\lambda - f'(t_z z)]$, a contradiction because z changes sign.

(iii) $\Sigma_{\lambda,1}$ is a smooth manifold of codimension 1 in H. To see this, let $v \in \Sigma_{\lambda,1}$, namely $\lambda_1[\lambda - f'(v)] = 1$. Obviously $\lambda_1[\lambda - f'(v)]$ is simple,
Ker$[F''_\lambda(v)]$ is one dimensional and spanned by some $\phi_\lambda \in H$. By $f''(v)v > 0$ it follows

$$(F''_\lambda(v), \phi_\lambda) = -\int_\Omega f''(v)v\phi_\lambda^2 < 0.$$

This suffices to apply [3, Lemma 3.2.1] and the result follows. □

We now focus our attention to $S_{\lambda,1}$ and $\Sigma_{\lambda,1}$. If $u \in H$ is a non degenerate (i.e. non singular) solution of $F_\lambda(u) = 0$, we denote by $\text{ind}(F_\lambda, u)$ its LS index.

Lemma 8. Every $u \in S_{\lambda,1}$ is non degenerate and $\text{ind}(F_\lambda, u) = 1$.

Proof. By the preceding arguments, if $u \in S_{\lambda,1}$ then $\lambda_1[\lambda - f'(t_uu)] = 1$, with $0 < t_u(x) < 1, \forall x \in \Omega$. Then $f'(t_u(x)u(x)) < f'(u(x)), \forall x \in \Omega$ and the monotonicity property of eigenvalues implies $\lambda_1[\lambda - f'(u)] > 1$, proving the Lemma. □

Remark 9. Lemma 8 allows us to give a simple proof of the result of [2] for $\lambda \in]\lambda_1, \lambda_2[$. Actually, for such λ, $u = 0$ is non-degenerate with $\text{ind}(F_\lambda, 0) = -1$ while the total degree on a ball of radius $r \gg 1$ is 1, see (3). The $u \in S_{\lambda,1}$ are also non-degenerate with index 1 and hence, F_λ being proper, their number is finite, say k. Moreover, if $\lambda \in]\lambda_1, \lambda_2[$, Remark 7-(ii) yields $S_\lambda = S_{\lambda,1}$. Then using the additivity property of the degree we get

$$1 = \text{ind}(F_\lambda, 0) + \sum_{u \in S_{\lambda,1}} \text{ind}(F_\lambda, u) = -1 + k,$$

and thus $k = 2$. □

4 Proof of Theorem 1

Theorem 1 cannot be proved by using the degree arguments outlined in Remark 9, because for $\lambda > \lambda_2$ problem (D) has other solutions than the ones in $S_{\lambda,1}$, and we do not know if they are degenerate or not, see e.g. Remark 10.

To overcome this difficulty we consider the bifurcation problem $F_\lambda(u) = 0$. It is well known that from λ_1 emanates a continuum C of solutions of $F_\lambda(u) = 0$. Moreover, near $(0, \lambda_1)$, C is a uniquely determined curve and if $(\lambda, u) \in C$, u does not change sign in Ω. For the bifurcation from a simple eigenvalue we refer, e.g. to [3, Sec. 5.4]. Let $C^+ = \{ (\lambda, u) : \lambda \in \mathbb{R}, \ u > 0, \ F_\lambda(u) = 0 \}$. By the previous remark, near $(0, \lambda_1)$ one has that $C^+ \subset C$. If $(\lambda, u_\lambda) \in C^+$ then by
Lemma 8 u_λ is non-degenerate and hence C^+ is a C^1 curve. In particular, there are no secondary bifurcations on C^+. From (2) it follows that C^+ is bounded in $[0, \Lambda] \times H$ for each $\Lambda > 0$. Since $F_\lambda(u) = 0$ has only the trivial solution provided $\lambda \leq \lambda_1$, then $\{u \in H : (\lambda, u) \in C^+\} = \emptyset$ for these λ. Moreover \overline{C}^+ (the closure of C^+) cannot contain $(0, \lambda_k)$, with $k \geq 2$, because λ_1 is the unique eigenvalue from which bifurcate positive solutions. Next, suppose that there exists a solutions $z_\lambda > 0$ of $F_\lambda(u) = 0$ such that $(\lambda, z_\lambda) \notin C^+$. Lemma 8 implies that z_λ is non-degenerate. By the continuation property of the topological degree, there is a branch (actually a C^1 curve) C^* containing (λ, z_λ). Repeating the preceding arguments, we deduce that C^* shares the same properties of C^+. In particular, $C^* \cap C^+ = \emptyset$ because otherwise C^+ (or C^*) would have a secondary bifurcation. In addition $(0, \lambda_1) \in \overline{C^*}$. Since the branch C bifurcating from $(0, \lambda_1)$ is (locally) unique, we find a contradiction, proving that the only positive solutions of $F_\lambda(u) = 0$ belong to C^+. In a quite similar way one shows that $C^- = \{(\lambda, u) : \lambda \in \mathbb{R}, u < 0, F_\lambda(u) = 0\}$ is a curve bifurcating from $(0, \lambda_1)$ which contains all the negative solutions of $F_\lambda = 0$. This proves that (D) has precisely one solutions $u_1 > 0$ and one solutions $u_2 < 0$. Both u_1, u_2 are non-degenerate. Moreover, if $\lambda \neq \lambda_k$, also $u = 0$ is non-degenerate. Thus the Local Inversion Theorem applies yielding a unique solution of (D_h) near $0, u_1, u_2$ provided $\|h\|_H \ll 1$. This completes the proof of Theorem 1. □

Remark 10. It is known that u_1, u_2 are local minima of the energy functional

$$J_\lambda(u) = \frac{1}{2} \int_\Omega \left[\|\nabla u\|^2 + \lambda u^2 \right] dx + \int_\Omega \left[\int_0^{u(x)} f(s) ds \right] dx,$$

where

$$f(s) = \begin{cases}
\lambda s - f(s) & \text{if } -s^* \geq s \leq s^*, \\
-\lambda s^* + f(-s^*) & \text{if } s < -s^*, \\
\lambda s^* - f(s^*) & \text{if } s > s^*,
\end{cases}$$

and $s^* > 0$ is such that $\lambda s^* - f(s^*) < 0$ and $-\lambda s^* - f(-s^*) > 0$. Moreover, if $\lambda > \lambda_2$ then (D) has at least a Mountain Pass solution $z \neq 0$. Theorem 1 implies that z changes sign in Ω. Unfortunately we are not able to estimate the precise number of changing sign solutions, the main difficulty being that we do not know if these solutions are non-degenerate. □
References

